$\$ 12,000$ is invested in an account compounded continuously at rate of 6.5%.
a) Determine the amount in the account at the end of 15 years.
b) How many years will it take for the account to grow to $\$ 1,000,000$?

- We must use the exponential growth equation: $A(t)=A_{0} e^{r t}$
- For this problem we have $A_{0}=12000$ and $r=.065$.
- Since $A(t)=12000 e^{0.065 t}, \quad A(15)=12000 e^{(.065) 15}=\$ 31,814.00$
- To determine how long it takes to grow to $\$ 1,000,000$, we must solve the equation $1000000=12000 e^{0.065 t}$ for t.
- $1000000=12000 e^{0.065 t} \Rightarrow \frac{1000000}{12000}=\frac{1000}{12}=e^{0.065 t} \Rightarrow$
- $\ln \left(\frac{1000}{12}\right)=\ln \left(e^{0.065 t}\right) \Rightarrow 4.4228=0.065 t \Rightarrow$
- $t=68.04$ years

